原文服务方: 计算机测量与控制       
摘要:
为了求解径向基函数神经网络的权值,首先分析了传统基于训练误差的方法,发现该方法容易造成数据过拟合,原因在于训练误差是风险函数的下偏估计;因此,文中提出采用缺一交叉验证得分代替训练误差,来实现无偏估计风险函数;实验对摩托数据与玻璃数据进行拟合,证实了基于缺一交叉验证的方法优于传统基于训练误差的方法,且所得到的径向基函数网络能够较光滑地拟合数据,不会造成过拟合.
推荐文章
一种新型径向基函数神经网络的非线性系统逼近
正弦型径向基函数(SRBF)
函数逼近
非线性系统
神经网络
一种基于蚁群聚类的径向基神经网络
径向基神经网络
蚁群聚类算法
基函数
采用人群搜索算法的径向基函数神经网络参数整定方法
径向基函数神经网络
人群搜索算法
逼近精度
可行性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种径向基函数神经网络的参数求解方法
来源期刊 计算机测量与控制 学科
关键词 径向基函数 神经网络 训练误差 缺一交叉验证
年,卷(期) 2010,(12) 所属期刊栏目 设计与应用
研究方向 页码范围 2812-2814
页数 分类号 TP183
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴乐南 东南大学信息科学与工程学院 412 3936 29.0 45.0
2 朱庆 东南大学信息科学与工程学院 7 43 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (6)
参考文献  (8)
节点文献
引证文献  (7)
同被引文献  (32)
二级引证文献  (12)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(3)
  • 参考文献(2)
  • 二级参考文献(1)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(3)
  • 引证文献(2)
  • 二级引证文献(1)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
径向基函数
神经网络
训练误差
缺一交叉验证
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导