基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
煤矿瓦斯涌出量的预测是国内外研究热点之一.将一个矿井中的瓦斯浓度分布视为一个多变量系统,提出了一种集成迭代自生成神经网络EISGNN,将集成学习思想与ISGNN相结合,采用抽样技术,选择数量少且能够反映训练样本集特征的样本训练多个ISGNN,最后将多个分类结果融合,从而得出分类结果.将EISGNN应用于煤矿瓦斯监测中,解决异常瓦斯采样数据检测和丢失瓦斯采样数据估计问题,仿真实验结果表明EISGNN是解决这两个问题的一种有效的方法.
推荐文章
基于径向基的瓦斯涌出量灰色预测模型
瓦斯涌出量
灰色预测
RBF
预测精度
基于MPSO-RBF的瓦斯涌出量预测研究
RBF神经网络
改进的PSO算法
瓦斯预测
矿井瓦斯涌出量预测研究新方法
非线性特征
灰色理论
遗传神经网络
瓦斯涌出量
综采工作面的瓦斯涌出规律及涌出量的预测
综采工作面
瓦斯源
瓦斯预测
瓦斯涌出
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于集成ISGNN的煤矿瓦斯涌出量估计方法
来源期刊 广西师范大学学报(自然科学版) 学科 工学
关键词 瓦斯监测 神经网络 集成ISGNN
年,卷(期) 2008,(3) 所属期刊栏目
研究方向 页码范围 129-132
页数 4页 分类号 TP183
字数 3570字 语种 中文
DOI 10.3969/j.issn.1001-6600.2008.03.033
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李爱国 西安科技大学计算机科学与技术学院 40 1409 14.0 37.0
2 雍煌 西安科技大学计算机科学与技术学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (149)
参考文献  (5)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(6)
  • 参考文献(1)
  • 二级参考文献(5)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
瓦斯监测
神经网络
集成ISGNN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广西师范大学学报(自然科学版)
双月刊
1001-6600
45-1067/N
大16开
桂林市育才路15号
48-54
1957
chi
出版文献量(篇)
3550
总下载数(次)
1
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导