基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于计算机用户对键盘的熟悉程度、击键习惯等不尽相同,每个用户都具有自己独特的击键生物特征,对于某个用户来说,其击键特征为正常类,其他所有用户为异常类,这可以利用模式识别中的单类分类器来解决,本文设计基于支持向量数据描述(SVDD)的击键生物特征身份认证系统模型,将该方法与BP、RBF和SOM方法进行对比,证实SVDD具有较好的识别效果,它可将非法用户误接受率从28.9%降低到0.28%,最后给出一个嵌入Windows用户登录中的口令+击键特征身份认证的实现技术.
推荐文章
基于支持向量数据描述的数据约简
支持向量机
支持向量数据描述
数据约简
分类
基于数据域描述的模糊支持向量回归
支持向量机
数据域描述
模糊隶属度
建模
基于RBF的支持向量数据描述算法性能分析
支持向量数据描述
核函数
高斯核函数
单值分类
基于加权深度支持向量数据描述的工业过程故障检测
动态建模
过程系统
算法
故障检测
深度学习
支持向量数据描述
非线性过程
加权因子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量数据描述的击键生物特征认证
来源期刊 模式识别与人工智能 学科 工学
关键词 单类分类器 支持向量数据描述(SVDD) 身份认证
年,卷(期) 2008,(5) 所属期刊栏目 研究与应用
研究方向 页码范围 704-708
页数 5页 分类号 TP393
字数 4277字 语种 中文
DOI 10.3969/j.issn.1003-6059.2008.05.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 倪桂强 解放军理工大学指挥自动化学院 48 266 8.0 14.0
2 潘志松 解放军理工大学指挥自动化学院 47 385 9.0 17.0
3 缪志敏 解放军理工大学指挥自动化学院 28 269 9.0 15.0
4 李佳桢 解放军理工大学指挥自动化学院 3 19 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (35)
参考文献  (8)
节点文献
引证文献  (15)
同被引文献  (11)
二级引证文献  (5)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(1)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(7)
  • 参考文献(1)
  • 二级参考文献(6)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(6)
  • 引证文献(3)
  • 二级引证文献(3)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
单类分类器
支持向量数据描述(SVDD)
身份认证
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
总被引数(次)
30919
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
论文1v1指导