基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于支持向量机的中文文本分类算法,介绍了文本分类过程中的文本表示、特征提取和SVM算法等关键技术.最后进行了实验和分析,由实验结果可以看出,该方法在精确率和召回率等方面能够达到比较好的效果.
推荐文章
中文文本分类研究
文本分类
k 近邻
支持向量机
最大熵
基于类别特征向量表示的中文文本分类算法
中文文本分类
向量空间模型
评价函数
特征提取
基于AdaBoost-Bayes算法的中文文本分类系统
中文分词
文本分类
AdaBoost
Bayes
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SVM的中文文本分类算法
来源期刊 重庆工学院学报(自然科学版) 学科 工学
关键词 支持向量机 特征提取 文本分类
年,卷(期) 2008,(7) 所属期刊栏目 信息·电子·计算机
研究方向 页码范围 84-87
页数 4页 分类号 TP311
字数 2838字 语种 中文
DOI 10.3969/j.issn.1674-8425-B.2008.07.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李波 重庆工学院电子信息与自动化学院 20 108 6.0 10.0
2 冀胜利 重庆工学院电子信息与自动化学院 1 14 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (1845)
参考文献  (6)
节点文献
引证文献  (14)
同被引文献  (21)
二级引证文献  (10)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(2)
  • 参考文献(1)
  • 二级参考文献(1)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(3)
  • 引证文献(3)
  • 二级引证文献(0)
2011(3)
  • 引证文献(3)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(3)
  • 引证文献(1)
  • 二级引证文献(2)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
特征提取
文本分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆理工大学学报(自然科学版)
月刊
1674-8425
50-1205/T
重庆市九龙坡区杨家坪
chi
出版文献量(篇)
7998
总下载数(次)
17
总被引数(次)
41083
相关基金
重庆市自然科学基金
英文译名:
官方网址:http://law.ddvip.com/law/2006-09/11584979384040.html
项目类型:重点项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导