原文服务方: 微电子学与计算机       
摘要:
针对中文文本分类准确率低,分类算法低效不稳定问题,提出基于自适应提升朴素贝叶斯算法.该算法采用Naive Bayes和AdaBoost,并且通过优化组合结构,融合两种算法的优点.首先,使用SMEL序列组合成词算法对中文语料进行分词,提取文本特征词汇.然后,使用增强的贝叶斯分类器,通过较小的样本训练,提取出文本特征,生成训练分类矩阵.结合自适应提升算法对简单分类器进行加权,保证分类有平稳准确的效果.通过实验证明,该算法与其他算法相比,错误率更低,可以使分类准确率达到98%以上,而且F1值也优于其他分类算法.
推荐文章
中文文本分类系统的设计与实现
文本分类
向量空间模型
特征项选择
权重
中文文本分类研究
文本分类
k 近邻
支持向量机
最大熵
基于类别特征向量表示的中文文本分类算法
中文文本分类
向量空间模型
评价函数
特征提取
不同情境下中文文本分类模型的表现及选择?
中文文本
文本分类
数据挖掘
情报分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于AdaBoost-Bayes算法的中文文本分类系统
来源期刊 微电子学与计算机 学科
关键词 中文分词 文本分类 AdaBoost Bayes
年,卷(期) 2016,(6) 所属期刊栏目
研究方向 页码范围 63-67
页数 分类号 TP309.7
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘双印 广东海洋大学信息学院 35 333 12.0 17.0
2 陈平华 广东工业大学计算机学院 84 860 11.0 28.0
3 徐凯 广东工业大学计算机学院 5 13 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (63)
共引文献  (368)
参考文献  (8)
节点文献
引证文献  (11)
同被引文献  (26)
二级引证文献  (8)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(8)
  • 参考文献(0)
  • 二级参考文献(8)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(11)
  • 参考文献(0)
  • 二级参考文献(11)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(11)
  • 引证文献(6)
  • 二级引证文献(5)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
中文分词
文本分类
AdaBoost
Bayes
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导