原文服务方: 计算机应用研究       
摘要:
首先对文本提取特征向量,再利用词语相似度求出文本特征子集,由支持向量机进行文本分类,实现了一个中文文本自动分类系统,并对该系统进行了针对SVM大规模真实文本的试验测试.试验表明,该方法的系统的招回率较低,而准确率较高,取得了令人满意的结果.
推荐文章
中文文本分类研究
文本分类
k 近邻
支持向量机
最大熵
支持向量机的中文文本分类研究
文本分类
支持向量机
基于类别特征向量表示的中文文本分类算法
中文文本分类
向量空间模型
评价函数
特征提取
基于支持向量机的中文文本自动分类研究
文本分类
线性支持向量机
招回率
准确率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机的中文文本自动分类研究
来源期刊 计算机应用研究 学科
关键词 文本分类 支持向量机 招回率 准确率
年,卷(期) 2005,(11) 所属期刊栏目 研究探讨
研究方向 页码范围 61-63
页数 3页 分类号 TP311.13
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (1807)
参考文献  (4)
节点文献
引证文献  (10)
同被引文献  (4)
二级引证文献  (9)
1975(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(5)
  • 参考文献(1)
  • 二级参考文献(4)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2007(7)
  • 引证文献(6)
  • 二级引证文献(1)
2009(2)
  • 引证文献(1)
  • 二级引证文献(1)
2010(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
文本分类
支持向量机
招回率
准确率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导