基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机是数据挖掘的新方法,由于其优秀的学习能力而得到了广泛的应用,但是,传统的支持向量机算法在处理大规模问题时存在训练时间过长和内存空间需求过大的问题,而应用多个支持向量机构成多分类器系统进行并行学习,是目前解决文本分类中大规模数据处理问题的一种有效方法。在分析传统并行算法的基础上,提出了一种改进的基于多支持向量机的并行学习算法,实验结果表明,采用该算法可使得分类效率得到较大的程度的提高,虽然,分类精度相对传统的方法略差,但是,在可接受的范围之内。
推荐文章
中文文本分类研究
文本分类
k 近邻
支持向量机
最大熵
基于支持向量机的中文文本自动分类研究
文本分类
支持向量机
招回率
准确率
基于类别特征向量表示的中文文本分类算法
中文文本分类
向量空间模型
评价函数
特征提取
基于支持向量机的中文极短文本分类模型
支持向量机
jieba分词
极短文本分类
TF-IDF
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的支持向量机中文文本分类
来源期刊 微型电脑应用 学科 工学
关键词 多支持向量机 文本分类 并行算法
年,卷(期) 2014,(10) 所属期刊栏目
研究方向 页码范围 17-19,31
页数 4页 分类号 TP311
字数 4362字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 傅德胜 82 681 12.0 22.0
2 顾伟 9 29 3.0 5.0
3 蔡玮 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (84)
共引文献  (295)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(11)
  • 参考文献(0)
  • 二级参考文献(11)
2002(17)
  • 参考文献(0)
  • 二级参考文献(17)
2003(14)
  • 参考文献(0)
  • 二级参考文献(14)
2004(9)
  • 参考文献(2)
  • 二级参考文献(7)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(11)
  • 参考文献(2)
  • 二级参考文献(9)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多支持向量机
文本分类
并行算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微型电脑应用
月刊
1007-757X
31-1634/TP
16开
上海市华山路1954号上海交通大学铸锻楼314室
4-506
1984
chi
出版文献量(篇)
6963
总下载数(次)
20
总被引数(次)
28091
论文1v1指导