原文服务方: 科技与创新       
摘要:
本文以榆林市城区及其周边范围为实验区,以TM遥感图像的第一主成分纹理信息、归一化植被指数和MNF变换得到的四个波段为数据源,采用支持向量机方法进行分类,并与最大似然法分类和单纯利用光谱信息的基于SVM分类结果进行比较.试验结果表明,将纹理分析方法应用于图像分类中可区分光谱混淆的地类;和传统的分类方法相比,采用支持向量机技术.使用光谱与纹理特征结合的分类方法可以获得更高的分类精度.
推荐文章
计算机辅助图像分类信息挖掘与应用探讨
多维信息
遥感分类
精度分析
遥感图像计算机分类方法的研究
遥感
图像分类
分类方法
基于ENVI的遥感图像分类方法研究
遥感
图像分类
监督分类
精度评价
基于蚁群算法的多光谱遥感图像分类
多光谱遥感图像
分类
光谱特征
形状特征
蚁群算法
支持向量机分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多源信息的TM遥感图像计算机分类
来源期刊 科技与创新 学科
关键词 最小噪声分离变换 灰度共生矩阵 支持向量机
年,卷(期) 2008,(21) 所属期刊栏目 图像处理
研究方向 页码范围 277-279
页数 3页 分类号 TP75
字数 语种 中文
DOI 10.3969/j.issn.1008-0570.2008.21.113
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 常庆瑞 西北农林科技大学资源环境学院 254 4005 33.0 47.0
2 DENG Kun 西北农林科技大学资源环境学院 1 6 1.0 1.0
3 JI Na 西北农林科技大学资源环境学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (131)
参考文献  (6)
节点文献
引证文献  (6)
同被引文献  (23)
二级引证文献  (17)
1979(2)
  • 参考文献(1)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(8)
  • 参考文献(1)
  • 二级参考文献(7)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(6)
  • 参考文献(1)
  • 二级参考文献(5)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(5)
  • 引证文献(0)
  • 二级引证文献(5)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
最小噪声分离变换
灰度共生矩阵
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科技与创新
半月刊
2095-6835
14-1369/N
大16开
2014-01-01
chi
出版文献量(篇)
41653
总下载数(次)
0
总被引数(次)
202805
相关基金
国家科技支撑计划
英文译名:
官方网址:http://kjzc.jhgl.org/
项目类型:重大项目
学科类型:能源
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导