基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于非负矩阵分解理论,提出一种新的有监督的特征提取方法,它具有二个特点: 一是在特征提取过程中它直接利用训练样本的类别信息,二是在计算上仍然采用与非负矩阵分解方法相同数学公式,因此这种新特征提取方法被称为组合类别信息的非负矩阵分解(CINMF)方法.另外,在分类时本文提出了基于两种特征融合的分类策略进一步提高CINMF方法的识别率.通过在YALE人脸库和ORL人脸库上进行实验,结果表明本文提出的新方法在识别率方面整体上好于原非负矩阵分解方法,甚至超过常用的主成分分析法(PCA).
推荐文章
非负矩阵分解及其改进方法
非负矩阵
非负分解
优化函数
迭代方程
基于稀疏性非负矩阵分解的故障监测方法
故障监测
非负矩阵分解
主元分析
稀疏编码
统计过程监控
基于约束非负矩阵分解的混合象元分解新方法
混合象元分解
顶点成分分析
最小二乘
约束的非负矩阵分解
基于非负矩阵分解的多模态过程故障监测方法
故障监测
多模态过程
非负矩阵分解
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种组合类别信息的非负矩阵分解方法及其应用
来源期刊 系统仿真学报 学科 工学
关键词 非负矩阵分解 组合类别信息的非负矩阵分解 特征提取 人脸识别
年,卷(期) 2008,(7) 所属期刊栏目 信息、控制、决策与仿真
研究方向 页码范围 1803-1807
页数 5页 分类号 TP391
字数 5286字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨静宇 南京理工大学计算机科学与技术学院 623 11098 50.0 74.0
2 LI Yong-zhi 南京理工大学计算机科学与技术学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非负矩阵分解
组合类别信息的非负矩阵分解
特征提取
人脸识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
系统仿真学报
月刊
1004-731X
11-3092/V
大16开
北京市海淀区永定路50号院
82-9
1989
chi
出版文献量(篇)
14694
总下载数(次)
35
总被引数(次)
173926
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导