基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了克服经典K-means算法对初始聚类中心过分依赖的缺点,该文提出采用竞争神经网络和密度思想对经典k-means算法进行预处理,从而改变经典K-means算法对初始聚类中心的随机选择。实验结果表明,这两种方法是有效的。
推荐文章
K-means聚类算法初始中心选择研究
K-means聚类算法
K个聚类中心
密度参数
K-means算法改进
Spark环境下K-means初始中心点优化研究综述
K-均值算法
分布式内存计算框架
算法优化
聚类算法
改进的K-means算法
K-means算法
数据分布
初始中心点
均衡化函数
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 K-means算法的初始点优化研究
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 聚类 K-MEANS 算法 实验
年,卷(期) 2008,(11Z) 所属期刊栏目
研究方向 页码范围 1176-1177
页数 2页 分类号 TP311.13
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 全太锋 5 24 3.0 4.0
2 牟颖 重庆师范大学物理学与信息技术学院 8 38 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类
K-MEANS
算法
实验
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导