基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,神经网络技术在入侵检测中得到了广泛应用,其中最具代表的是BP神经网络,但其本身所具有的局部极小性质限制了检测性能的提高.RBF神经网络在一定程度上克服了BP神经网络存在的问题,但如何确定一个合适的RBF网络隐层神经元中心个数又是保证其应用效果的关键之一.因此,将基于熵的模糊聚类和RBF神经网络相结合,提出了基于EFC的改进RBF神经网络算法,并将该方法应用于入侵检测研究.实验表明,该算法可以获得满意的性能.
推荐文章
基于RBF和Elman混合神经网络的入侵检测系统的研究
入侵检测系统
异常检测
误用检测
混合神经网络
改进的RBF神经网络在入侵检测中的应用
入侵检测
径向基函数
模糊C均值聚类
正交最小二乘法
基于改进灰狼算法的RBF神经网络研究
灰狼优化算法
非线性
RBF神经网络
权值
分类
基于神经网络的入侵检测模型
入侵
入侵检测系统
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进RBF神经网络的入侵检测研究
来源期刊 计算机工程与应用 学科 工学
关键词 入侵检测 模糊聚类 径向基函数神经网络
年,卷(期) 2008,(31) 所属期刊栏目 网络、通信、安全
研究方向 页码范围 135-138
页数 4页 分类号 TP393
字数 4867字 语种 中文
DOI 10.3778/j.issn.1002-8331.2008.31.039
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 田俊峰 河北大学数学与计算机学院 121 962 17.0 24.0
2 张晶 河北大学数学与计算机学院 46 226 9.0 13.0
3 毕志明 河北大学数学与计算机学院 3 37 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (190)
参考文献  (5)
节点文献
引证文献  (10)
同被引文献  (16)
二级引证文献  (29)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(5)
  • 引证文献(1)
  • 二级引证文献(4)
2015(5)
  • 引证文献(2)
  • 二级引证文献(3)
2016(11)
  • 引证文献(0)
  • 二级引证文献(11)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(5)
  • 引证文献(2)
  • 二级引证文献(3)
2019(6)
  • 引证文献(1)
  • 二级引证文献(5)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
入侵检测
模糊聚类
径向基函数神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
河北省自然科学基金
英文译名:
官方网址:
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导