基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
采用基于支持向量机的预测模型对水库中长期入库径流进行预报,建立径流预报的SVM模型.预报因子的优劣决定着预测精度的高低.为了提高预报精度,尝试采用模糊优选法对预报因子进行优选.将所建模型应用于新疆雅马渡站的径流预测中,并与没有进行预报因子优选的SVM模型进行比较.结果表明,进行预报因子优化后的SVM模型明显提高了径流的预报精度,具有更高的应用价值.
推荐文章
基于支持向量机的中长期入库径流预报
支持向量机(SVM)
径流预报
预报因子
基于随机森林与支持向量机的水库长期径流预报
龙江水库
长期径流预报
随机森林
支持向量机
支持向量机在中长期径流预报中的应用
径流中长期预报
SCE-UA
参数辨识
支持向量机
人工神经网络
季节性支持向量机中长期径流预报模型
中长期径流预报
季节性
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机的中长期入库径流预报
来源期刊 黑龙江水专学报 学科 地球科学
关键词 支持向量机(SVM) 径流预报 预报因子
年,卷(期) 2009,(3) 所属期刊栏目 水利水电工程
研究方向 页码范围 1-4
页数 4页 分类号 P338.2
字数 3763字 语种 中文
DOI 10.3969/j.issn.2095-008X.2009.03.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵红标 2 14 2.0 2.0
2 吴义斌 2 14 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (1944)
参考文献  (5)
节点文献
引证文献  (12)
同被引文献  (29)
二级引证文献  (9)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(2)
  • 参考文献(2)
  • 二级参考文献(0)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(3)
  • 引证文献(2)
  • 二级引证文献(1)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机(SVM)
径流预报
预报因子
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
黑龙江大学工程学报
季刊
2095-008X
23-1566/T
16开
哈尔滨市学府路74号
1972
chi
出版文献量(篇)
3181
总下载数(次)
5
总被引数(次)
10495
论文1v1指导