基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对语音信号的卷积混迭模型,利用不同语音信号之间的近似独立和短时平稳特性,提出一种基于信号二阶统计量的联合块对角化方法,解决超定卷积盲分离问题.该方法采用非对角线上各子矩阵F-范数的平方和作为联合块对角化性能的评判准则,将原四次代价函数转化为一组较为简单的二次子代价函数,每一子代价函数用于估计酉混迭矩阵的一个子矩阵.依次最小化各子函数,迭代搜索代价函数最小点,得到混迭矩阵的估计.理论分析及实验结果表明,所提方法不仅能够达到与类Jacobi经典方法同样好的分离效果,并且具有更低的计算复杂度、更快的收敛速度和对传输信道阶数、迭代初始值不敏感的特点.
推荐文章
一种有效的语音信号盲分离方法
盲源分离
独立分量分析
排列模糊
语音信号处理
基于FICA的盲语音信号分离方法研究
盲信号
独立分量分析
FICA
预处理
基于峭度的BSS开关算法的语音信号盲分离
盲信号处理
盲源分离
峭度
批处理算法
自适应算法
语音信号识别基于盲源信号分离的实现
盲信号分离
DSP
FastICA
ADSP_BF533平台
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 卷积混迭语音信号的联合块对角化盲分离方法
来源期刊 声学学报 学科 物理学
关键词
年,卷(期) 2009,(2) 所属期刊栏目
研究方向 页码范围 167-174
页数 8页 分类号 O4
字数 6482字 语种 中文
DOI 10.3321/j.issn:0371-0025.2009.02.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 冯大政 西安电子科技大学雷达信号处理国家重点实验室 199 1584 18.0 28.0
2 张华 西安电子科技大学雷达信号处理国家重点实验室 36 250 9.0 14.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (8)
参考文献  (10)
节点文献
引证文献  (18)
同被引文献  (11)
二级引证文献  (9)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(2)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2011(4)
  • 引证文献(4)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(4)
  • 引证文献(2)
  • 二级引证文献(2)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(6)
  • 引证文献(2)
  • 二级引证文献(4)
引文网络交叉学科
相关学者/机构
期刊影响力
声学学报
双月刊
0371-0025
11-2065/O4
大16开
北京市北四环西路21号
2-181
1964
chi
出版文献量(篇)
2139
总下载数(次)
5
总被引数(次)
26571
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
论文1v1指导