基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将查询结果根据内容进行聚类是提高搜索引擎服务质量的关键技术之一.搜索结果聚类时只能从文档标题和文档片段中抽取有限信息,传统聚类方法难以准确计算其相似度.提出了一种基于词间语义相关度的搜索结果聚类算法,该算法以词为聚类的核心,词所出现的文档为词的属性,根据词在搜索结果文档中共现的情况来划分类别.该方法可以充分利用词间的语义相关性,类别划分后即可确定类名.实验结果表明,对搜索结果聚类时与K-Means和STC算法相比,质量上有所提高.
推荐文章
基于相似度的词聚类算法
词相似度
词聚类
统计语言模型
基于语义列表的中文文本聚类算法
文本聚类
文本表示
语义列表
相似度计算
聚簇表示
一种基于语义相似度的群智能文本聚类的新方法
文本聚类
语义相似度
K-均值算法
蚁群算法
模拟退火算法
基于CBC-LIKE算法的产品特征词聚类的研究
产品特征
语义相似度
聚类算法
观点挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于词间语义相关度的搜索结果聚类算法
来源期刊 郑州大学学报(理学版) 学科 工学
关键词 搜索结果聚类 词间语义相关度 文档相似度
年,卷(期) 2009,(1) 所属期刊栏目
研究方向 页码范围 73-76
页数 4页 分类号 TP181
字数 2911字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张国英 北京石油化工学院计算机科学与工程系 25 408 13.0 19.0
2 沙芸 北京石油化工学院计算机科学与工程系 14 108 6.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (12)
参考文献  (3)
节点文献
引证文献  (3)
同被引文献  (2)
二级引证文献  (3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
搜索结果聚类
词间语义相关度
文档相似度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
郑州大学学报(理学版)
季刊
1671-6841
41-1338/N
大16开
郑州市高新技术开发区科学大道100号
36-191
1962
chi
出版文献量(篇)
2278
总下载数(次)
0
总被引数(次)
9540
论文1v1指导