基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
当前的搜索引擎中,存在大量的冗余搜索结果,且不能对搜索结果进行指导分类.本文提出一种基于密度的聚类算法,能够有效地对搜索结果进行聚类优化和分类.该算法选取搜索结果中权重高于一定值的网页,提取网页的特征值与候选关键字,标注特征范围,再进行网页相似度比较,最大限度地消除冗余网页,并根据网页的候选关键字提供分类,从而提高搜索结果的精准性和满意度,达到更智能的效果.
推荐文章
基于布谷鸟搜索改进的聚类算法
聚类
k-means算法
布谷鸟搜索算法
收敛速度
全局最优
基于聚类和融合算法的AGV路径搜索研究
路径规划
聚类
融合算法
基于K-center和信息增益的Web搜索结果聚类方法
Web文档
聚类
聚类标志
K-center
信息增益
基于改进引力搜索算法的K-means聚类
K-means算法
引力搜索算法
引力系数衰减因子
免疫克隆选择算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于搜索结果的聚类算法
来源期刊 计算机与现代化 学科 工学
关键词 基于密度的聚类算法 网页相似度 聚类 冗余网页
年,卷(期) 2012,(11) 所属期刊栏目 人工智能
研究方向 页码范围 35-38
页数 4页 分类号 TP391
字数 4006字 语种 中文
DOI 10.3969/j.issn.1006-2475.2012.11.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李旭伟 四川大学计算机学院 45 272 9.0 15.0
2 罗钊航 四川大学计算机学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (71)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(4)
  • 参考文献(4)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
基于密度的聚类算法
网页相似度
聚类
冗余网页
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导