基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机(SVM)的学习性能主要取决于参数选择.论文基于育种算法提出了混合算法的支持向量机参数优化模型,即将种子或者粒子所对应的适应度取作交叉验证方法中的测试样本集数据的识别率,构成基于混合算法的支持向量机,并通过数值试验验证了该方法的可行性.
推荐文章
基于改进烟花算法的SVM特征选择和参数优化
二进制编码
烟花算法
特征选择
参数优化
基于改进SFLA算法对SVM算法超参数的优化
混合蛙跳算法
支持向量机
超参数
智能算法
基于自适应遗传算法的SVM参数优化
支持向量机
参数优化
遗传算法
网格搜索法
基于细菌觅食特征改进粒子群算法优化SVM模型参数研究
细菌觅食特征
粒子群算法
支持向量机
故障预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于育种算法的SVM参数优化
来源期刊 安徽大学学报(自然科学版) 学科 工学
关键词 SVM 参数优化 育种算法
年,卷(期) 2009,(4) 所属期刊栏目
研究方向 页码范围 26-28
页数 3页 分类号 TP181
字数 1878字 语种 中文
DOI 10.3969/j.issn.1000-2162.2009.04.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张楠 西北大学数学系 14 111 7.0 10.0
2 路晓丽 西北大学公共管理学院 11 114 7.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (1820)
参考文献  (4)
节点文献
引证文献  (10)
同被引文献  (3)
二级引证文献  (5)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
SVM
参数优化
育种算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
安徽大学学报(自然科学版)
双月刊
1000-2162
34-1063/N
大16开
安徽省合肥市
26-39
1960
chi
出版文献量(篇)
2368
总下载数(次)
6
总被引数(次)
11731
相关基金
河南省自然科学基金
英文译名:
官方网址:http://kyc.hncj.edu.cn/gzzd/gzzd56.htm
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导