原文服务方: 计算机应用研究       
摘要:
由于优化杜鹃算法是利用了鸟类特殊的利维飞行模式的群体智能算法,并且增加了粒子间的信息交流,故将该算法引入支持向量机惩罚系数和核参数的自动寻优中.给出了实现方式,并讨论了概率参数的设置对收敛性的影响.通过与传统的GA/PSO-SVM对比验证,MCS-SVM方法使得分类精确率平均提高2.28%,既能显著提高分类效率,又表现出很好的泛化性能.
推荐文章
基于细菌觅食特征改进粒子群算法优化SVM模型参数研究
细菌觅食特征
粒子群算法
支持向量机
故障预测
基于改进烟花算法的SVM特征选择和参数优化
二进制编码
烟花算法
特征选择
参数优化
基于改进混沌粒子群的混合核SVM参数优化及应用
支持向量机
混合核
混沌粒子群优化
参数优化
煤与瓦斯突出
基于自适应遗传算法的SVM参数优化
支持向量机
参数优化
遗传算法
网格搜索法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MCS的SVM参数优化研究
来源期刊 计算机应用研究 学科
关键词 支持向量机 参数寻优 同步智能寻优 优化杜鹃搜索
年,卷(期) 2012,(12) 所属期刊栏目 算法研究探讨
研究方向 页码范围 4553-4555,4559
页数 4页 分类号 TP301.6
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2012.12.039
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘以安 江南大学物联网工程学院 114 862 15.0 23.0
2 孙力 江南大学物联网工程学院 39 264 8.0 15.0
3 郭一格 江南大学物联网工程学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (132)
参考文献  (7)
节点文献
引证文献  (5)
同被引文献  (24)
二级引证文献  (1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
参数寻优
同步智能寻优
优化杜鹃搜索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导