应用Lie对称法,当弹性能具有三阶非调和修正项时,分析纵向变形的非线性弹性波动方程.通过不同对称下的恒等条件,寻找对称代数,并将它简化为二阶常微分方程.对该简化的常微分方程作进一步分析后,获得若干个显式的精确解.分析Apostol的研究成果(Apostol B F.on a non-linear wave equation in elasticity.Phys Lett A,2003,318(6):545-552)发现,非调和修正项通常导致解在有限时间内具有时间相关奇异性.除了得到时间相关奇异性的解外,还得到无法显示时间相关奇异性的解.