原文服务方: 太原理工大学学报       
摘要:
简要介绍了独立分量分析的基本数学模型和算法,在此基础上,探讨了独立分量分析在有噪混合图像分离中的应用,提出了一种将小波阈值法去噪与独立分量分析相结合的多通道含噪盲信号分离算法,该算法在对混合含噪图像进行独立分量分析之前,使用小波阈值去噪去除含噪混合图像中的噪声.实验结果表明,该方法能有效地降低噪声信号的影响,较好地恢复了原始图像,解决了传统的独立分量分析方法无法实现加性噪声的多通道含噪盲信号分离的缺陷.
推荐文章
基于FastICA算法和小波变换的雷达信号分选
带噪雷达
信号分选
FastICA
小波去噪
基于小波变换消噪和盲源信号分离的过程监控方法
小波变换
盲源信号分离
过程监控
基于小波变换和脊波变换的自适应图像去噪算法
脊波变换
小波变换
Radon变换
阈值函数
图像去噪
基于新阈值函数小波变换的噪声盲分离算法
盲源分离
自然梯度算法
偏差去除技术
小波阈值去噪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波变换和FASTICA算法的有噪混合图像盲分离
来源期刊 太原理工大学学报 学科
关键词 独立分量分析 盲源分离 小波去噪 图像信号
年,卷(期) 2009,(3) 所属期刊栏目 计算机与信息工程
研究方向 页码范围 229-231,239
页数 4页 分类号 TV911.73
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李鸿燕 太原理工大学信息工程学院 30 136 8.0 10.0
2 任光龙 太原理工大学信息工程学院 3 28 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
独立分量分析
盲源分离
小波去噪
图像信号
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太原理工大学学报
双月刊
1007-9432
14-1220/N
大16开
太原市迎泽西大街79号3337信箱
1957-01-01
汉语
出版文献量(篇)
4103
总下载数(次)
0
总被引数(次)
28999
论文1v1指导