基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于基于免疫的学习方法能够较好地适应数据流不断变化及高速处理的要求,本文据此提出一种基于免疫原理的数据流聚类算法(AIN-STREAM).该算法能够动态适应数据流的变化,并能有效抑制噪声.AIN-STREAM通过建立与维护B细胞特征向量,从而能够根据用户的要求自动调整B细胞的识别区域,保证聚类结果的稳定性.理论分析和实验结果表明,在聚类结果相当的条件下,MN-STREAM具有比同类算法更高的时间与空间效率,同时具有较高的聚类精度.
推荐文章
基于滑动窗口的动态数据流聚类算法研究
数据流
滑动窗口
聚类
数据挖掘
基于混合差分进化的滑动窗口数据流聚类算法研究
混合差分进化
滑动窗口
数据流
聚类
大数据下数据流聚类挖掘算法的优化分析
大数据
数据流
聚类
挖掘算法
时间衰减
F-Stream算法
一种实现混合属性数据流聚类的算法
混合属性数据
相似性
k - 近邻算法
k - 均值聚类
分类属性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于免疫原理的数据流聚类算法
来源期刊 模式识别与人工智能 学科 工学
关键词 免疫原理 数据流 聚类 特征向量 识别区域
年,卷(期) 2009,(2) 所属期刊栏目 研究与应用
研究方向 页码范围 246-255
页数 10页 分类号 TP311
字数 9756字 语种 中文
DOI 10.3969/j.issn.1003-6059.2009.02.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡运发 复旦大学计算机信息与技术系 150 3430 27.0 54.0
2 张成洪 复旦大学信息管理与信息系统系 36 666 14.0 25.0
3 王述云 复旦大学计算机信息与技术系 6 56 3.0 6.0
7 郝秀兰 复旦大学计算机信息与技术系 4 98 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (41)
参考文献  (5)
节点文献
引证文献  (8)
同被引文献  (13)
二级引证文献  (18)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(6)
  • 引证文献(4)
  • 二级引证文献(2)
2013(4)
  • 引证文献(1)
  • 二级引证文献(3)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(5)
  • 引证文献(1)
  • 二级引证文献(4)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
免疫原理
数据流
聚类
特征向量
识别区域
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
总被引数(次)
30919
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导