作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机(Suppoft Vector Machine,SVM)的参数选择一直缺乏很完善的方法,很大程度上限制了它的应用.为了获得较好的SVM参数,提出了基于佳点集遗传算法的参数选择方法,利用佳点集遗传算法对遗传算法中的交叉操作进行了重新设计,减少了遗传算法的收敛时间并且提高了遗传算法的精度,从而确保了SVM参数选择的准确性.通过数值实验表明由该方法所得的支持向量机可以在一定程度上自动地选择参数,具有一定的推广意义.
推荐文章
基于遗传算法的双子支持向量机的模型选择
双子支持向量机
遗传算法
核函数
参数选择
基于加速遗传算法的选择性支持向量机集成
加速遗传算法
适应函数
负相关学习
支持向量机
选择性集成
基于遗传算法和支持向量机的故障诊断方法
最小二乘支持向量机
自适应遗传算法
机载电气盒
故障诊断
遗传算法优化支持向量机的网络流量混沌预测
遗传算法优化
支持向量机
网络流量
混沌预测
相空间重构
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于佳点集遗传算法的支持向量机的参数选择
来源期刊 计算机技术与发展 学科 工学
关键词 支持向量机 参数选择方法 遗传算法 佳点集遗传算法
年,卷(期) 2009,(8) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 86-88
页数 3页 分类号 TP301.6
字数 2763字 语种 中文
DOI 10.3969/j.issn.1673-629X.2009.08.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陶亮 安徽大学计算智能与信号处理教育部重点实验室 108 931 17.0 25.0
2 孙浩 安徽大学计算智能与信号处理教育部重点实验室 2 11 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (239)
参考文献  (4)
节点文献
引证文献  (4)
同被引文献  (16)
二级引证文献  (11)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(3)
  • 引证文献(3)
  • 二级引证文献(0)
2012(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(2)
  • 引证文献(0)
  • 二级引证文献(2)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(3)
  • 引证文献(0)
  • 二级引证文献(3)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
参数选择方法
遗传算法
佳点集遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导