基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机的性能主要受到核函数的参数和惩罚因子的影响,其中,以高斯核函数作为支持向量机的核函数的应用最为广泛。论文在研究了惩罚参数 C 及高斯核函数参数σ对支持向量机分类性能影响的基础上,利用网格搜索法和遗传算法对基于 RBF 核的 SVM 进行了参数优化,并通过 UCI 数据集进行了验证。实验结果显示,遗传算法相较于网格搜索算法具有更快的搜索速度,在实际运用中更加高效。
推荐文章
遗传算法优化支持向量机的网络流量混沌预测
遗传算法优化
支持向量机
网络流量
混沌预测
相空间重构
预测模型
基于遗传算法优化支持向量机的交通流量预测
支持向量机
遗传算法
城市交通流量
预测模型
基于遗传算法和支持向量机的故障诊断方法
最小二乘支持向量机
自适应遗传算法
机载电气盒
故障诊断
基于遗传算法的双子支持向量机的模型选择
双子支持向量机
遗传算法
核函数
参数选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法的支持向量机的参数优化
来源期刊 计算机与数字工程 学科 工学
关键词 支持向量机 核函数 参数 遗传算法
年,卷(期) 2016,(4) 所属期刊栏目 算法与分析
研究方向 页码范围 575-577,595
页数 4页 分类号 TP273
字数 2614字 语种 中文
DOI 10.3969/j.issn.1672-9722.2016.04.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曹路 五邑大学信息工程学院 14 40 3.0 5.0
5 欧阳效源 中山大学信息科学与技术学院 1 12 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (228)
参考文献  (8)
节点文献
引证文献  (12)
同被引文献  (36)
二级引证文献  (29)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(8)
  • 参考文献(3)
  • 二级参考文献(5)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(4)
  • 引证文献(4)
  • 二级引证文献(0)
2018(7)
  • 引证文献(4)
  • 二级引证文献(3)
2019(19)
  • 引证文献(4)
  • 二级引证文献(15)
2020(11)
  • 引证文献(0)
  • 二级引证文献(11)
研究主题发展历程
节点文献
支持向量机
核函数
参数
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导