基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在D-FNN算法基础上,提出了一种新的基于椭圆基函数的广义动态模糊神经网络方法.该方法不仅可以用于系统建模、辨识和控制,而且还可以用于模糊规则的自动生成或抽取.提出了一种模糊ε-完备性作为在线参数分配机制,避免初始化选择的随机性,同时,该算法不仅能对模糊规则而且能对输入变量的重要性作出评估,从而使每条规则的输入变量的宽度可以根据它对系统性能贡献的大小实施在线自适应调整.开发了相关的算法程序,最后针对实际案例进行了仿真分析,表明了该算法的有效性和高效性.
推荐文章
基于云模型的模糊神经网络算法研究
模糊神经网络
数据挖掘
云模型
云规则生成
'软与'算法
BP算法优化
不确定性推理
基于RBF模糊神经网络模型的广义预测控制
广义预测控制
RBF模糊神经网络
模糊模型辨识
一种新型的动态递归-直觉模糊神经网络及其学习算法
直觉模糊集
动态递归神经网络
学习算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于广义动态模糊神经网络的算法研究
来源期刊 计算机工程与设计 学科 工学
关键词 动态模糊神经网络 广义动态模糊神经网络 椭圆基函数 模糊规则 学习算法
年,卷(期) 2009,(20) 所属期刊栏目 人工智能
研究方向 页码范围 4727-4730
页数 4页 分类号 TP393
字数 4350字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (9)
节点文献
引证文献  (11)
同被引文献  (26)
二级引证文献  (28)
1991(4)
  • 参考文献(4)
  • 二级参考文献(0)
1993(3)
  • 参考文献(3)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(1)
  • 二级引证文献(1)
2013(4)
  • 引证文献(3)
  • 二级引证文献(1)
2014(3)
  • 引证文献(1)
  • 二级引证文献(2)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(6)
  • 引证文献(1)
  • 二级引证文献(5)
2017(7)
  • 引证文献(0)
  • 二级引证文献(7)
2018(6)
  • 引证文献(0)
  • 二级引证文献(6)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
动态模糊神经网络
广义动态模糊神经网络
椭圆基函数
模糊规则
学习算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
相关基金
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导