基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Over the past decade, automatic traffic accident recognition has become a prominent objective in the area of machine vision and pattern recognition because of its immense application potential in developing autonomous Intelligent Transportation Systems (ITS). In this paper, we present a new framework toward a real-time automated recognition of traffic accident based on the Histogram of Flow Gradient (HFG) and statistical logistic regression analysis. First, optical flow is estimated and the HFG is constructed from video shots. Then vehicle patterns are clustered based on the HFG-features. By using logistic regression analysis to fit data to logistic curves, the classifier model is generated. Finally, the trajectory of the vehicle by which the accident was occasioned, is determined and recorded. The experimental results on real video sequences demonstrate the efficiency and the applicability of the framework and show it is of higher robustness and can comfortably provide latency guarantees to real-time surveillance and traffic monitoring applications.
推荐文章
免疫捕捉real-time PCR对蚜虫中CMV检测体系的建立与应用
免疫捕捉real-time PCR
黄瓜花叶病毒(CMV)
蚜虫
Real-time PCR方法检测肉品中的沙门氏菌
沙门氏菌
Real-time PCR
快速检测
肉品
Real-time PCR、焦磷酸测序及基因芯片快速检测ALDH2?2基因多态性
ALDH2
多态性
焦磷酸测序
Real-time PCR
基因芯片
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Statistical Framework for Real-Time Traffic Accident Recognition
来源期刊 信号与信息处理(英文) 学科 医学
关键词 Activity PATTERN Automatic TRAFFIC ACCIDENT RECOGNITION Flow GRADIENT LOGISTIC Model
年,卷(期) 2010,(1) 所属期刊栏目
研究方向 页码范围 77-81
页数 5页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Activity
PATTERN
Automatic
TRAFFIC
ACCIDENT
RECOGNITION
Flow
GRADIENT
LOGISTIC
Model
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号与信息处理(英文)
季刊
2159-4465
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
301
总下载数(次)
0
总被引数(次)
0
论文1v1指导