基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
常规逐步回归模型具有建模简单,能表示自变量和因变量的显式函数关系和使用广泛等优点,但逐步回归模型在因变量测值波动比较大时拟合和预报误差大,而马尔科夫链模型具有适应大波动的优点,为此将逐步回归与马尔科夫模型相结合,提出一种高精度的变形预报模型.在介绍逐步回归模型和马尔科夫预报模型概念的基础上,利用某大坝的实测资料进行建模分析.实践表明,变形预报值能很好地吻合了实测结果,表明该模型可以用于大坝安全监控.
推荐文章
灰色马尔科夫模型及其应用
灰色系统理论
GM(1
1)模型
马尔科夫预测
粮食产量预测
基于离散隐马尔科夫模型的语音识别技术
语音识别
隐马尔科夫模型
动态时间规整
人工神经网络
基于不同隐马尔科夫模型的图像识别方法
隐马尔科夫模型
E-HMM
图像识别
指纹识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 大坝变形监控的逐步回归马尔科夫模型
来源期刊 水利水文自动化 学科 工学
关键词 大坝 安全监控 逐步回归 马尔科夫链 模型 变形预报
年,卷(期) 2010,(1) 所属期刊栏目 方法研究
研究方向 页码范围 69-72
页数 4页 分类号 TV64
字数 2799字 语种 中文
DOI 10.3969/j.issn.1674-9405.2010.01.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱劭宇 5 6 2.0 2.0
2 施晓萍 3 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (19)
参考文献  (3)
节点文献
引证文献  (2)
同被引文献  (3)
二级引证文献  (2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
大坝
安全监控
逐步回归
马尔科夫链
模型
变形预报
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水利信息化
双月刊
1674-9405
32-1819/TV
大16开
江苏省南京市雨花台区铁心桥街95号
1983
chi
出版文献量(篇)
1581
总下载数(次)
6
总被引数(次)
4838
论文1v1指导