作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
AdaBoostSVM容易受到离群点的干扰从而影响到算法的泛化性能.离群点是不反映一般规律的数据点,当被错分的数据含有离群点时,AdaBoostSVM会不断地给离群点赋予很大的权重,进而影响到提升的分类准确率.针对这一问题,提出了RAdaBoostSVM算法,通过对权重过大的误分类样本用和它相邻近的几个样本的中心来代替,有效地减小了离群点对提升效果的影响.与AdaBoostSVM算法相比,RAdaBoostSVM对离群点更加稳健更适合于噪声条件下的分类问题.在基准数据集上的实验结果验证了算法的有效性.
推荐文章
基于支持向量机的NSCT域自适应图像水印算法
支持向量机
模糊核聚类
非下采样轮廓波变换
自适应
基于自适应步长的支持向量机快速训练算法
支持向量机
序贯最小化
机器学习
自适应步长
自适应遗传算法优化支持向量机的过电压识别
过电压识别
支持向量机
输电线路
遗传算法
视频文字大小自适应提取算法
文字检测
自适应
多分辨率
离散傅里叶变换
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 稳健的多支持向量机自适应提升算法
来源期刊 大连交通大学学报 学科 工学
关键词 集成学习 支持向量机 稳健性 离群点
年,卷(期) 2010,(2) 所属期刊栏目 数理科学
研究方向 页码范围 98-100
页数 分类号 TP301.6
字数 2234字 语种 中文
DOI 10.3969/j.issn.1673-9590.2010.02.025
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张振宇 大连交通大学理学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (45)
参考文献  (9)
节点文献
引证文献  (3)
同被引文献  (7)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(2)
  • 二级参考文献(0)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
集成学习
支持向量机
稳健性
离群点
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大连交通大学学报
双月刊
1673-9590
21-1550/U
大16开
大连市沙河口区黄河路794号
1980
chi
出版文献量(篇)
3012
总下载数(次)
3
总被引数(次)
12659
论文1v1指导