基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于基本蚁群系统算法没有考虑节点位置,对所有的解采用相同信息素蒸发准则,使算法收敛速度慢,易于停滞,且易收敛于局部最优,为了克服这一缺点,提出了基于距离导引函数构建解,同时采用分级蒸发参数控制蒸发信息素,对蚁群系统算法进行改进,通过仿真实验得到本文算法比基本蚁群系统算法更好的解,且解的性能更好.
推荐文章
求解TSP的改进蚁群算法
蚁群算法(ACA)
旅行商问题
候选城市列表
聚类
蚁群系统(ACS)
求解TSP问题的改进最大最小蚁群算法
蚁群算法
旅行商问题
优质解
最大最小化
基于遗传-模拟退火的蚁群算法求解TSP问题
传统蚁群算法
遗传算法
模拟退火
旅行商问题
解TSP问题的蚁群算法及其收敛性分析
旅行商问题
蚁群算法
收敛性
信息素
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进蚁群算法的TSP问题研究
来源期刊 云南民族大学学报(自然科学版) 学科 工学
关键词 蚁群系统算法 蚁群优化算法 旅行商问题
年,卷(期) 2010,(3) 所属期刊栏目 信息与计算机科学
研究方向 页码范围 220-223
页数 分类号 TP18
字数 2742字 语种 中文
DOI 10.3969/j.issn.1672-8513.2010.03.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何晋 云南民族大学电气信息工程学院 18 21 3.0 3.0
2 梁志茂 云南民族大学电气信息工程学院 7 15 2.0 3.0
3 滕建华 云南民族大学电气信息工程学院 2 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (44)
参考文献  (6)
节点文献
引证文献  (5)
同被引文献  (21)
二级引证文献  (28)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(3)
  • 引证文献(1)
  • 二级引证文献(2)
2013(5)
  • 引证文献(1)
  • 二级引证文献(4)
2014(4)
  • 引证文献(0)
  • 二级引证文献(4)
2015(6)
  • 引证文献(1)
  • 二级引证文献(5)
2016(7)
  • 引证文献(0)
  • 二级引证文献(7)
2017(4)
  • 引证文献(0)
  • 二级引证文献(4)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
蚁群系统算法
蚁群优化算法
旅行商问题
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
云南民族大学学报(自然科学版)
双月刊
1672-8513
53-1192/N
大16开
中国昆明市一二·一大街134号
1992
chi
出版文献量(篇)
2286
总下载数(次)
5
总被引数(次)
8502
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导