作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
K-means算法需要人工设定聚类个数且易受孤立点影响,根据这个缺陷提出了一种新的改进算法.改进算法通过设定初始值及初始值的最大值,在聚类过程中自动获取聚类数k.实验结果表明,该算法在一定程度上缓解了K-means算法对初始值敏感及受孤立点影响的问题,能产生高质量的聚类结果.
推荐文章
一种改进的K-means聚类算法
聚类分析
K-means算法
离群点数据
一种基于密度的k-means聚类算法
聚类
k-means
信息熵
近邻密度
孤立点
一种改进K-means聚类的FCMM算法
K-means聚类
萤火虫
最大最小距离
Tent映射
混沌搜索
基于改进磷虾群算法的K-means算法
磷虾群算法
聚类算法
精英引领
最佳聚类数
动态分群
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于kmax的K-means改进算法
来源期刊 佛山科学技术学院学报(自然科学版) 学科 工学
关键词 聚类 K-means算法 kmax
年,卷(期) 2010,(2) 所属期刊栏目 信息科学
研究方向 页码范围 49-52
页数 分类号 TP18
字数 2800字 语种 中文
DOI 10.3969/j.issn.1008-0171.2010.02.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄美璇 国立华侨大学计算机科学与技术学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (924)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (1)
二级引证文献  (5)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(11)
  • 参考文献(1)
  • 二级参考文献(10)
2008(6)
  • 参考文献(4)
  • 二级参考文献(2)
2009(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
聚类
K-means算法
kmax
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
佛山科学技术学院学报(自然科学版)
双月刊
1008-0171
44-1438/N
大16开
广东省佛山市江湾一路18号
1988
chi
出版文献量(篇)
2495
总下载数(次)
2
总被引数(次)
7770
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导