基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统数据处理组合方法(Group method of data handling,GMDH)网络建模用最小二乘法辨识参数会导致模型预测效果不理想的问题,将模糊推理模型引入GMDH网络,以取代传统GMDH网络的部分描述(即完全二元二次多项式),提出了一种基于模糊GMDH网络的交通流量预测模型.计算机仿真结果表明,该模型预测平均相对误差仅为2.31%,小于传统GMDH网络模型预测平均相对误差3.35%,说明了该模型是有效的.
推荐文章
基于粒子群的模糊神经网络交通流量预测
短时交通流
预测模型
模糊神经网络
粒子群算法
船舶交通流量预测的灰色神经网络模型
船舶交通量
灰色模型
神经网络
基于PSO的BP神经网络-Markov船舶交通流量预测模型
船舶交通流量预测
BP神经网络
马尔科夫模型(Markov模型)
粒子群优化(PSO)
基于深度卷积神经网络的交通流量预测数学模型设计
交通流量预测
智能交通
数学模型
深度神经网络
预测精度
仿真实验
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于模糊GMDH网络的交通流量预测模型
来源期刊 南京理工大学学报(自然科学版) 学科 交通运输
关键词 数据处理组合方法 网络 模糊 交通流量 预测
年,卷(期) 2010,(1) 所属期刊栏目
研究方向 页码范围 46-50
页数 5页 分类号 TP183|U491.14
字数 3301字 语种 中文
DOI 10.3969/j.issn.1005-9830.2010.01.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈森发 东南大学系统工程研究所 192 3070 32.0 45.0
2 陈洪 东南大学系统工程研究所 68 436 13.0 18.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (48)
参考文献  (8)
节点文献
引证文献  (7)
同被引文献  (14)
二级引证文献  (2)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据处理组合方法
网络
模糊
交通流量
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京理工大学学报(自然科学版)
双月刊
1005-9830
32-1397/N
南京孝陵卫200号
chi
出版文献量(篇)
3510
总下载数(次)
7
总被引数(次)
33414
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导