作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将自回归模型(AR)和支持向量机(SVM)应用到机床滚动轴承的故障诊断中,根据滚动轴承的振动信号建立自回归模型,以自回归参数和残差的方差作为特征向量,然后建立基于支持向量机的多故障分类器,进而判断滚动轴承的故障类型.通过实例分析和与神经网络方法对比,表明该方法能有效地判别机床滚动轴承的故障类型.
推荐文章
基于时序AR与灰色GM模型的滚动轴承故障诊断研究
滚动轴承
故障诊断
灰色理论
时序模型
基于最小二乘映射和SVM的滚动轴承故障诊断
故障诊断
LSM
SVM
无量纲特征参量
基于改进HHT能量熵和SVM的滚动轴承故障诊断
希尔伯特-黄变换
能量熵
支持向量机
滚动轴承
故障诊断
基于AR模型和径向基神经网络的滚动轴承故障诊断
滚动轴承
振动信号
AR模型
RBF神经网络
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 AR模型和SVM在机床滚动轴承故障诊断中的应用
来源期刊 机械工程与自动化 学科 工学
关键词 自回归模型 支持向量机 滚动轴承 故障诊断
年,卷(期) 2010,(2) 所属期刊栏目 质量监测与故障诊断
研究方向 页码范围 132-134
页数 3页 分类号 TH133.36|TH165+.3
字数 2805字 语种 中文
DOI 10.3969/j.issn.1672-6413.2010.02.049
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙学斌 5 24 4.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (23)
参考文献  (4)
节点文献
引证文献  (7)
同被引文献  (13)
二级引证文献  (11)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(3)
  • 引证文献(3)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(8)
  • 引证文献(1)
  • 二级引证文献(7)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
自回归模型
支持向量机
滚动轴承
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械工程与自动化
双月刊
1672-6413
14-1319/TH
大16开
太原市胜利街228号
22-117
1972
chi
出版文献量(篇)
9123
总下载数(次)
41
总被引数(次)
29895
论文1v1指导