原文服务方: 湖南大学学报(自然科学版)       
摘要:
将基于变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的方法引入滚动轴承的故障诊断,提出了基于EMD(Empirical Mode Decomposition,EMD)和VPMCD的滚动轴承故障诊断方法.采用EMD方法提取滚动轴承振动信号特征向量后,以VPMCD作为模式识别方法对滚动轴承的工作状态和故障类型进行分类.对正常状态、外圈故障、内圈故障3种不同类别下的滚动轴承振动信号进行了分析,结果表明了该方法在滚动轴承故障诊断中的有效性.同时,与人工神经网络(Artificial neural network,ANN)算法的对比分析表明,VMPCD算法分类性能的稳定性以及计算效率均要高于ANN算法.
推荐文章
基于经验模式分解的滚动轴承故障诊断方法
经验模式分解
滚动轴承
故障诊断
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
基于EEMD 和改进VPMCD 的滚动轴承故障诊断方法
改进VPMCD
EEMD方法
奇异值分解
滚动轴承
故障诊断
WVPMCD及其在滚动轴承故障诊断中的应用
WVPMCD
局部特征尺度分解
加权最小二乘
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于变量预测模型的模式识别方法在滚动轴承故障诊断中的应用
来源期刊 湖南大学学报(自然科学版) 学科
关键词 模式识别 故障诊断 变量预测模型 滚动轴承
年,卷(期) 2013,(3) 所属期刊栏目 机电工程
研究方向 页码范围 36-40
页数 5页 分类号 TH165.3
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨宇 湖南大学汽车车身先进设计制造国家重点实验室 170 5200 44.0 68.0
2 程军圣 湖南大学汽车车身先进设计制造国家重点实验室 210 5603 44.0 69.0
3 曾鸣 湖南大学汽车车身先进设计制造国家重点实验室 15 231 10.0 15.0
4 王欢欢 湖南大学汽车车身先进设计制造国家重点实验室 4 100 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (16)
参考文献  (10)
节点文献
引证文献  (18)
同被引文献  (54)
二级引证文献  (39)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(3)
  • 引证文献(1)
  • 二级引证文献(2)
2016(9)
  • 引证文献(5)
  • 二级引证文献(4)
2017(11)
  • 引证文献(5)
  • 二级引证文献(6)
2018(21)
  • 引证文献(4)
  • 二级引证文献(17)
2019(8)
  • 引证文献(1)
  • 二级引证文献(7)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
模式识别
故障诊断
变量预测模型
滚动轴承
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖南大学学报(自然科学版)
月刊
1674-2974
43-1061/N
16开
1956-01-01
chi
出版文献量(篇)
4768
总下载数(次)
0
总被引数(次)
41941
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导