作者:
原文服务方: 机械传动       
摘要:
提出了一种基于本征模式分量投影图像分析的滚动轴承故障诊断方法,实现了滚动轴承故障的状态识别与程度识别,首先,依托经验模式分解方法(Empirical Mode Decomposition,EMD)对轴承故障信号进行分析,获取故障本征模式分量(Intrinsic Mode Function,IMF);其次,构建各个本征模式分量的时频三维灰度投影图像,引入基于灰度共生矩阵(Gray Level Co-occurrence Matrix,GLCM)的纹理特征对三维投影图像进行分析;最后,通过主成分分析进一步压缩特征维度,并结合支持向量机(Support Vector Machine,SVM)实现了滚动轴承的故障诊断.研究从图像特征角度实现故障诊断,丰富了现有振动信号故障特征获取方法,实现了滚动轴承故障的状态识别与程度识别.
推荐文章
基于EMD的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解
峭度系数
Hilbert变换
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
基于多尺度熵的滚动轴承故障诊断方法
样本熵
多尺度熵
滚动轴承
故障诊断
复杂性
基于小波变换的滚动轴承故障诊断分析
小波分析
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于IMF投影图像分析的滚动轴承故障诊断方法研究
来源期刊 机械传动 学科
关键词 故障诊断 灰度共生矩阵 经验模式分解 投影图像
年,卷(期) 2017,(4) 所属期刊栏目 理论研究
研究方向 页码范围 19-23,27
页数 6页 分类号
字数 语种 中文
DOI 10.16578/j.issn.1004.2539.2017.04.05
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄雪梅 5 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (60)
共引文献  (119)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(8)
  • 参考文献(2)
  • 二级参考文献(6)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(12)
  • 参考文献(2)
  • 二级参考文献(10)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
故障诊断
灰度共生矩阵
经验模式分解
投影图像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械传动
月刊
1004-2539
41-1129/TH
大16开
河南省郑州市科学大道149号
1977-01-01
中文
出版文献量(篇)
6089
总下载数(次)
0
总被引数(次)
31469
论文1v1指导