原文服务方: 机械传动       
摘要:
针对滚动轴承故障信息不易提取的特性,提出了完全集合经验模态分解(CEEMDAN)自适应消噪和共振解调技术(DRT)相结合的故障诊断方法.首先,利用CEEMDAN自适应地将信号分解成多个分量,通过互相关系数方法进行重构以达到消噪的目的;然后,对重构的信号进行谱峭度分析,得到冲击成分所在的频带,并据此设计带通滤波器对重构信号进行滤波处理;最后,对滤波后的信号进行Hilbert包络谱分析,提取冲击成分的频率,并与滚动轴承故障特征频率对比,进行故障模式识别.通过动力学仿真和滚动轴承实验对该方法进行了有效性论证.结果表明,该方法可以有效识别滚动轴承的故障信息.
推荐文章
基于改进型CEEMDAN-TKEO滚动轴承故障诊断方法研究
轴承故障诊断
改进型CEEMDAN
TKEO
基于EMD的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解
峭度系数
Hilbert变换
基于多尺度熵的滚动轴承故障诊断方法
样本熵
多尺度熵
滚动轴承
故障诊断
复杂性
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CEEMDAN-DRT的滚动轴承故障诊断方法研究
来源期刊 机械传动 学科
关键词 滚动轴承 CEEMDAN DRT 故障诊断
年,卷(期) 2020,(4) 所属期刊栏目 开发应用
研究方向 页码范围 158-164
页数 7页 分类号
字数 语种 中文
DOI 10.16578/j.issn.1004.2539.2020.04.025
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 庞明军 常州大学机械工程学院 39 73 5.0 6.0
2 别锋锋 常州大学机械工程学院 11 21 2.0 4.0
3 杨罡 常州大学机械工程学院 5 13 3.0 3.0
4 谷晟 常州大学机械工程学院 1 0 0.0 0.0
5 郭越 常州大学机械工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (80)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(2)
  • 二级参考文献(4)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(10)
  • 参考文献(4)
  • 二级参考文献(6)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
滚动轴承
CEEMDAN
DRT
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械传动
月刊
1004-2539
41-1129/TH
大16开
河南省郑州市科学大道149号
1977-01-01
中文
出版文献量(篇)
6089
总下载数(次)
0
总被引数(次)
31469
论文1v1指导