原文服务方: 计算机测量与控制       
摘要:
飞行试验中多传感器测量系统中因类型、精度以及空间位置的变化,导致在数据融合时往往不能得到最优测量精度;提出了一种新的分布式多传感器目标跟踪分组融合算法,即利用模糊理论中的决策距离(Decision Space)思想,对飞行试验目标跟踪的多传感器系统进行动态分组(Dynamic Grouping),通过定义多传感器之间的关系矩阵(Relation Matrix),依据判别门限(Threshold)判定其是否参与最终处理,据此以获得在分布式多传感器目标跟踪测量系统中目标跟踪测量的最佳融合数据精度;仿真结果证明,该算法是一种有效的分组算法.
推荐文章
基于动态加权的分布式多传感器航迹融合算法
分布式系统
航迹融合
相对距离
支持度函数
基于信息滤波的分布式多传感器状态估计算法
信息滤波
Kalman滤波
多传感器
分布式
状态估计
多传感器分布式融合检测自适应算法
多传感器数据融合
分布式检测
贝叶斯融合检测策略
自适应学习
基于广义相关法的分布式多传感器多目标跟踪算法研究
分布式
广义相关法
多传感器多目标
性能分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于决策距离的分布式多传感器动态分组算法
来源期刊 计算机测量与控制 学科
关键词 目标跟踪系统 动态分组 决策距离
年,卷(期) 2010,(8) 所属期刊栏目
研究方向 页码范围 1950-1952
页数 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 苏明 12 12 2.0 3.0
3 杨廷梧 21 185 7.0 13.0
7 党怀义 17 85 4.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (17)
参考文献  (3)
节点文献
引证文献  (2)
同被引文献  (9)
二级引证文献  (2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
目标跟踪系统
动态分组
决策距离
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导