为了克服粒子群算法求解多目标问题极易收敛到伪Pareto前沿(等价于单目标优化问题中的局部最优解)和收敛速度较慢的缺陷,提出一种合并帕累托占优概念到动态邻居和变异因子的粒子群算法(particle swarm optimizer based on dynamic neighbor topology and mutation operator,DNMPSO)来处理多目标优化问题(DNMMOPSO),该算法也合并了外部存档技术来存储每次迭代产生的非劣解.模拟结果表明,提出的算法在多目标检测问题上要优于其他算法,因此,DNMMOPSO可以作为求解多目标优化问题的有效算法.