基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Random Forest is an excellent classification tool, especially in the –omics sciences such as metabolomics, where the number of variables is much greater than the number of subjects, i.e., “n p.” However, the choices for the arguments for the random forest implementation are very important. Simulation studies are performed to compare the effect of the input parameters on the predictive ability of the random forest. The number of variables sampled, m-try, has the largest impact on the true prediction error. It is often claimed that the out-of-bag error (OOB) is an unbiased estimate of the true prediction error. However, for the case where n p, with the default arguments, the out-of-bag (OOB) error overestimates the true error, i.e., the random forest actually performs better than indicated by the OOB error. This bias is greatly reduced by subsampling without replacement and choosing the same number of observations from each group. However, even after these adjustments, there is a low amount of bias. The remaining bias occurs because when there are trees with equal predictive ability, the one that performs better on the in-bag samples will perform worse on the out-of-bag samples. Cross-validation can be performed to reduce the remaining bias.
推荐文章
Soil organic carbon dynamics study bias deduced from isotopic fractionation in corn plant
Bias of SOC dynamics study
Isotopic fractionation in corn
Isotope mass balance equation
Bias range
基于Random Forest和AHP的贵德县北部山区滑坡危险性评价
滑坡危险性
组合赋权模型
层次分析法
随机森林法
融合复制机制和input-feeding方法的中文自动摘要模型
自动摘要
复制机制
input-feeding方法
指针网络
序列到序列
注意力机制
Forest carbon storage in Guizhou Province based on field measurement dataset
Forest carbon storage
Field measurement dataset
Karst landform
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Bias of the Random Forest Out-of-Bag (OOB) Error for Certain Input Parameters
来源期刊 统计学期刊(英文) 学科 医学
关键词 Random FOREST MULTIVARIATE Classification Metabolomics Small n Large p
年,卷(期) 2011,(3) 所属期刊栏目
研究方向 页码范围 205-211
页数 7页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Random
FOREST
MULTIVARIATE
Classification
Metabolomics
Small
n
Large
p
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导