基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决非平衡数据分类中的正样本分类精度不高的瓶颈问题,提出了一种异构分类器融合环境下的非平衡数据分类模型.该模型基于差异采样率的重采样算法和改进的Adaboost算法,融合了SVM和C5.0两种基分类器;基于知识融合机制,采用了独特的分类器选择策略、分类器集成方法、分类决策方案.仿真实验结果表明,SCECM模型分类性能稳定,在非平衡数据集上具有良好的分类性能.
推荐文章
融合DECORATE的异构分类器集成算法
分类器集成
异构
Stacking
DECORATE
差异性
融合异构信息的网络视频在线半监督分类方法
网络视频
异构信息
半监督分类
多类型分类器融合的文本分类方法研究
文本分类
分类器融合
主成分分析
潜在语义索引
异构网络中多元成分大数据智能分类方法研究
异构网络
多元成分
大数据分类
概率密度
对比分析
先验假设
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 异构分类器融合环境下的非平衡数据分类模型
来源期刊 高技术通讯 学科 工学
关键词 非平衡数据分类 异构分类器 差异采样率 分类模型
年,卷(期) 2011,(10) 所属期刊栏目 先进制造与自动化技术
研究方向 页码范围 1101-1107
页数 分类号 TP391.4
字数 5200字 语种 中文
DOI 10.3772/j.issn.1002-0470.2011.10.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨炳儒 北京科技大学信息工程学院 319 4361 32.0 49.0
2 隋海峰 北京科技大学信息工程学院 7 52 4.0 7.0
3 翟云 北京科技大学信息工程学院 7 122 5.0 7.0
7 刘丽珍 首都师范大学信息工程学院 31 193 9.0 11.0
8 周法国 中国矿业大学机电与信息工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (28)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1908(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(2)
  • 参考文献(0)
  • 二级参考文献(2)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(2)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非平衡数据分类
异构分类器
差异采样率
分类模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
高技术通讯
月刊
1002-0470
11-2770/N
大16开
北京市三里河路54号
82-516
1991
chi
出版文献量(篇)
5099
总下载数(次)
14
总被引数(次)
39217
相关基金
北京市自然科学基金
英文译名:Natural Science Foundation of Beijing Province
官方网址:http://210.76.125.39/zrjjh/zrjj/
项目类型:重大项目
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导