基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高光谱遥感图像分类是高光谱成像信息处理的研究热点,高光谱成像的内在特点对于分类器设计具有直接影响.高斯过程是近年来发展迅速的一种新的机器学习方法,具备容易实现、超参数可自适应获取以及预测输出具有概率意义等优点,比较适合于处理图像分类问题.首先对高斯过程的基本概念及其主要的分类算法进行了简要介绍,然后在对高光谱图像分类的特点和高光谱图像分类的研究现状的分析基础上,讨论了基于高斯过程的高光谱图像分类的基本思想,提出了基于空间约束的高斯过程分类和基于半监督高斯过程分类等适合高光谱图像分类的新方法.最后对基于高斯过程的高光谱图像分类研究的发展趋势进行了展望.
推荐文章
局部保护降维与高斯混合模型的高光谱图像分类
高斯混合模型
局部保护投影
局部保护非负矩阵分离
高光谱图像分类
基于高光谱图像的分类方法研究
高光谱图像
支持向量机
人工神经元网络
决策树分类
最大似然分类法
K -均值聚类法
迭代自组织方法
基于图像分割和LSSVM的高光谱图像分类
高光谱图像分类
图像分割
LSSVM
数据降维
结合空间信息的高光谱图像快速分类方法
高光谱图像
空间区域特征光谱
非线性特征提取
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 高斯过程及其在高光谱图像分类中的应用
来源期刊 智能系统学报 学科 工学
关键词 高斯过程 高光谱图像 机器学习 图像分类
年,卷(期) 2011,(5) 所属期刊栏目
研究方向 页码范围 396-404
页数 分类号 TP181
字数 8803字 语种 中文
DOI 10.3969/j.issn.1673-4785.2011.05.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姚伏天 浙江大学计算机学院 6 95 5.0 6.0
5 钱沄涛 浙江大学计算机学院 37 354 10.0 18.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (31)
参考文献  (19)
节点文献
引证文献  (10)
同被引文献  (14)
二级引证文献  (39)
1956(1)
  • 参考文献(1)
  • 二级参考文献(0)
1968(2)
  • 参考文献(1)
  • 二级参考文献(1)
1973(1)
  • 参考文献(1)
  • 二级参考文献(0)
1978(1)
  • 参考文献(1)
  • 二级参考文献(0)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(3)
  • 二级参考文献(0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(3)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(3)
  • 引证文献(3)
  • 二级引证文献(0)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(7)
  • 引证文献(1)
  • 二级引证文献(6)
2018(12)
  • 引证文献(0)
  • 二级引证文献(12)
2019(12)
  • 引证文献(0)
  • 二级引证文献(12)
2020(7)
  • 引证文献(1)
  • 二级引证文献(6)
研究主题发展历程
节点文献
高斯过程
高光谱图像
机器学习
图像分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导