基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高光谱遥感图像分类是遥感图像处理的一项重要内容.高光谱遥感图像具有非线性属性.图像中不同方位光谱特征的变化将使得仅从标记训练样本得到的分类器分类精度不会太高.为了提高分类的精度,一方面应对光谱信息的合理利用;另一方面,对空间信息的利用也非常重要.高斯过程(Gaussion process,GP)是一种贝叶斯统计学习方法,能够建立概率模型,并且使得分类结果更易于解释.传统GP分类方法中核函数的构造仅利用光谱信息.本文提出了一种加入空间关系的新分类方法.利用遥感图像空间相关性,在GP分类方法中通过构造新的核函数(spatial Gauss kernel,SGK)来实现空间约束,部分消除了同物异谱和同谱异物造成的分类错误.实验结果表明,该方法对于提高高光谱遥感图像的分类精度具有积极意义.
推荐文章
结合空间信息的高光谱图像快速分类方法
高光谱图像
空间区域特征光谱
非线性特征提取
分类
基于SSAE深度学习特征表示的高光谱遥感图像分类方法
高光谱遥感图像分类
堆叠稀疏自动编码器
深度学习
特征表示
支持向量机
局部保护降维与高斯混合模型的高光谱图像分类
高斯混合模型
局部保护投影
局部保护非负矩阵分离
高光谱图像分类
基于DE-GEP的高光谱遥感图像分类
遥感图像
演化算法
波段选择
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 用于高光谱遥感图像分类的空间约束高斯过程方法
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 遥感图像 分类 高斯过程 空间相关性 核函数
年,卷(期) 2009,(5) 所属期刊栏目 数据挖掘及应用专栏
研究方向 页码范围 665-670
页数 6页 分类号 TP751.1
字数 4151字 语种 中文
DOI 10.3321/j.issn:0469-5097.2009.05.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姚伏天 浙江大学计算机科学与技术学院 6 95 5.0 6.0
2 钱沄涛 浙江大学计算机科学与技术学院 37 354 10.0 18.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (71)
参考文献  (6)
节点文献
引证文献  (9)
同被引文献  (14)
二级引证文献  (16)
1968(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(8)
  • 参考文献(1)
  • 二级参考文献(7)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(5)
  • 参考文献(2)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(3)
  • 引证文献(2)
  • 二级引证文献(1)
2012(6)
  • 引证文献(2)
  • 二级引证文献(4)
2013(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(4)
  • 引证文献(2)
  • 二级引证文献(2)
2016(5)
  • 引证文献(1)
  • 二级引证文献(4)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
遥感图像
分类
高斯过程
空间相关性
核函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导