基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机(support vector machine,SVM)作为一种新颖的机器学习方法已成功应用于短期电力负荷预测,然而应用研究发现SVM算法性能参数的设置将直接影响负荷预测的精度.为此在对SVM参数性能分析的基础上,提出了SCE-UA(shuffled complex evolution University of Arizona)支持向量机短期电力负荷预测模型建模的思路及关键参数的选取,在建模过程中引入了径向基核函数,简化了非线性问题的求解过程,并应用SCE-UA算法辨识SVM的参数.贵州电网日96点负荷曲线预测的实际算例表明,所提SCE-UA支持向量机模型不仅克服了SVM参数选择的盲目性,而且能提高预测准确率,是一种行之有效的短期电力负荷预测模型.
推荐文章
基于支持向量机的短期负荷预测
电力系统负荷
短期预测
支持向量机
网格法
基于最小二乘支持向量机的短期负荷预测模型
最小二乘支持向量机
神经网络
短期负荷预测
时间序列预测
基于相似日的支持向量机短期负荷预测
负荷预测
最小二乘支持向量机
细菌趋化
相似日
日期距离
基于支持向量机回归的电力负荷预测研究
结构风险最小化
支持向量机
支持向量回归
电力负荷预测
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SCE-UA支持向量机的短期电力负荷预测模型研究
来源期刊 大连理工大学学报 学科 工学
关键词 负荷预测 支持向量机 SCE-UA 相似日
年,卷(期) 2011,(2) 所属期刊栏目
研究方向 页码范围 263-268
页数 分类号 TM74
字数 3868字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 程春田 大连理工大学水电与水信息研究所 168 2851 30.0 45.0
2 李刚 大连理工大学水电与水信息研究所 143 1746 22.0 35.0
3 林剑艺 大连理工大学水电与水信息研究所 10 316 7.0 10.0
4 曾筠 大连理工大学水电与水信息研究所 4 43 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (82)
共引文献  (520)
参考文献  (16)
节点文献
引证文献  (10)
同被引文献  (30)
二级引证文献  (11)
1982(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1993(4)
  • 参考文献(2)
  • 二级参考文献(2)
1994(3)
  • 参考文献(1)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(8)
  • 参考文献(0)
  • 二级参考文献(8)
2001(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(9)
  • 参考文献(0)
  • 二级参考文献(9)
2003(20)
  • 参考文献(1)
  • 二级参考文献(19)
2004(14)
  • 参考文献(4)
  • 二级参考文献(10)
2005(11)
  • 参考文献(0)
  • 二级参考文献(11)
2006(5)
  • 参考文献(5)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(4)
  • 引证文献(2)
  • 二级引证文献(2)
2016(5)
  • 引证文献(2)
  • 二级引证文献(3)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
负荷预测
支持向量机
SCE-UA
相似日
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大连理工大学学报
双月刊
1000-8608
21-1117/N
大16开
大连市理工大学出版社内
8-82
1950
chi
出版文献量(篇)
3166
总下载数(次)
3
总被引数(次)
39997
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导