基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高含水期水淹层变化的动态特性,提出一种基于主成分分析的最小二乘支持向量机水淹层动态预测方法.该方法应用数据挖掘方法与改进的支持向量机方法,研究高含水期水淹层的分类识别问题,找到测井参数曲线与水淹级别之间的非线性映射关系,建立适合高含水期水淹特征的动态识别模型.它不仅充分考虑各种影响因素,而且利用主成分分析法准确提取影响水淹级别划分的测井参数曲线,避免模型输入参数间存在相关性导致划分精度低以及模型求解复杂、训练速度慢的缺点.结果表明,该方法较其他方法具有更快的运算速度和更高的识别符合率,其运算速度为43s,识别符合率达到97.0%,能体现高含水油田水淹层的动态变化特征.
推荐文章
基于主成分分析的离散过程神经网络水淹层动态预测方法
测井曲线
动态预测
水淹层识别
主成分分析
离散过程神经网络
基于主成分分析的离散过程神经网络水淹层动态预测方法
测井曲线
动态预测
水淹层识别
主成分分析
离散过程神经网络
基于状态空间主成分分析网络的故障检测方法
过程系统
主元分析
算法
故障检测
状态空间
深度学习
基于测地距离的核主成分分析方法
测地距离
核主成分分析
特征提取
数据分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于主成分分析的水淹层动态预测方法
来源期刊 大庆石油学院学报 学科 工学
关键词 动态预测 水淹层识别 主成分分析 最小二乘支持向量机
年,卷(期) 2011,(2) 所属期刊栏目 石油与天然气工程
研究方向 页码范围 51-55
页数 分类号 TE357.8
字数 3747字 语种 中文
DOI 10.3969/j.issn.2095-4107.2011.02.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 钟仪华 西南石油大学理学院 32 180 7.0 12.0
2 朱海双 西南石油大学理学院 4 26 2.0 4.0
3 李榕 西南石油大学理学院 8 60 3.0 7.0
7 张志银 西南石油大学理学院 3 24 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (51)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
动态预测
水淹层识别
主成分分析
最小二乘支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东北石油大学学报
双月刊
2095-4107
23-1582/TE
大16开
黑龙江省大庆市高新技术开发区发展路199号东北石油大学学报编辑部
14-90
1977
chi
出版文献量(篇)
3238
总下载数(次)
4
总被引数(次)
31805
论文1v1指导