基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于煤质指标预测焦炭热性质建模过程中易出现的多重共线性问题,提出应用偏最小二乘回归对焦炭热性质进行预测的建模思路.考虑到煤质指标与焦炭热性质之间复杂的非线性关系,采用拟线性化处理的方法,将煤质指标的一次效应、二次效应及交互效应作为模型输入,建立焦炭热性质预测的偏最小二乘回归模型;基于拟线性化处理的非线性偏最小二乘回归和线性偏最小二乘回归对焦炭热性质预测实例进行分析.研究结果表明:基于偏最小二乘回归方法建立的焦炭热性质预测模型是有效可行的:非线性偏最小二乘回归模型的预测精度明显比线性偏最小二乘回归模犁的预测精度高.
推荐文章
电力负荷预测的核偏最小二乘回归模型
核偏最小二乘
电力负荷
预测
混沌时间序列局域偏最小二乘回归多步预测模型
混沌序列
多步预测
偏最小二乘回归
局域模型
线性回归的总体最小二乘非线性解算
非线性
总体最小二乘
不等精度
随机变量
偏最小二乘回归神经网络的矿坑涌水量预测
矿坑涌水量
偏最小二乘回归
神经网络
预报模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于偏最小二乘回归的焦炭热性质非线性预测模型
来源期刊 中南大学学报(自然科学版) 学科 工学
关键词 焦炭 焦炭反应性指数 焦炭反应后强度 偏最小二乘回归 非线性预测
年,卷(期) 2011,(5) 所属期刊栏目 地质工程·土木工程
研究方向 页码范围 1406-1412
页数 分类号 TK019
字数 5610字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴超 中南大学资源与安全工程学院 508 5432 33.0 48.0
2 张进春 中南大学资源与安全工程学院 11 124 7.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (42)
参考文献  (9)
节点文献
引证文献  (16)
同被引文献  (71)
二级引证文献  (55)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(6)
  • 参考文献(3)
  • 二级参考文献(3)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(8)
  • 引证文献(3)
  • 二级引证文献(5)
2015(11)
  • 引证文献(2)
  • 二级引证文献(9)
2016(15)
  • 引证文献(5)
  • 二级引证文献(10)
2017(15)
  • 引证文献(1)
  • 二级引证文献(14)
2018(6)
  • 引证文献(1)
  • 二级引证文献(5)
2019(12)
  • 引证文献(1)
  • 二级引证文献(11)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
焦炭
焦炭反应性指数
焦炭反应后强度
偏最小二乘回归
非线性预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中南大学学报(自然科学版)
月刊
1672-7207
43-1426/N
大16开
湖南省长沙市中南大学校内
42-19
1956
chi
出版文献量(篇)
7515
总下载数(次)
5
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导