基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
蚁群优化算法应用于复杂问题的求解是非常耗时的.文章在MATLAB环境下实现了一个基于GPU+CPU的并行MAX-MIN蚁群系统,并将其应用于旅行商问题的求解.让全部蚂蚁共享一个伪随机数矩阵,一个信息素矩阵,一个禁忌矩阵和一个概率矩阵,并运用了一个全新的基于这些矩阵的随机选择算法-AIR(All-In-Roulette).文章还介绍了如何使用这些矩阵来构造并行蚁群优化算法,并与相应串行算法进行了比较.计算结果表明新的并行算法比相应串行算法要高效很多.
推荐文章
基于C++ AMP加速并行蚁群算法
蚁群算法
并行蚁群算法
C++ AMP
GPU计算
基于细粒度模型的并行蚁群优化算法
蚁群优化算法
蚁群系统
并行算法
细粒度模型
TSP问题
基于GPU的反卷积算法并行优化
并行
反卷积
GPU
CUDA
并行蚁群算法求解加权MAX-SAT
蚁群算法
加速比
并行
最大化可满足性问题(MAX-SAT)
加权MAX-SAT
多核
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于All-In-Roulette选择算法的GPU并行加速蚁群优化算法
来源期刊 计算机与数字工程 学科 工学
关键词 蚁群优化 GPU 并行算法
年,卷(期) 2011,(5) 所属期刊栏目 算法与分析
研究方向 页码范围 23-26
页数 分类号 TP301.6
字数 2692字 语种 中文
DOI 10.3969/j.issn.1672-9722.2011.05.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周国华 5 25 3.0 5.0
2 付杰 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (1)
同被引文献  (3)
二级引证文献  (6)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
蚁群优化
GPU
并行算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导