基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
采用灰色系统理论,建立了基于GM(1,1)的船闸货运量预测模型.模型参数计算分别采用粒子群优化算法和最小二乘法,两者进行对比发现,预测误差相当,但是粒子群优化算法可以避免繁琐的矩阵运算而优于最小二乘法.应用基于粒子群优化算法的灰色系统模型进行了船闸货运量的预测.
推荐文章
基于灰色模型的铁路货运量预测 ——以陕西省铁路货运为例
铁路货运
灰色模型
灰色预测
数据序列
后验差检验
预测精度
基于灰色系统理论的船闸货运量预测——以淮安船闸为例
船闸
货运量预测
灰色系统理论
残差
关联度
后验差
基于FOA优化混合核LSSVM的铁路货运量预测
铁路货运量
预测方法
混合核LSSVM
果蝇优化算法
基于灰色自适应粒子群LSSVM的铁路货运量预测
铁路货运量预测
灰色预测模型
最小二乘支持向量机
自适应粒子群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化算法下的灰色系统船闸货运量预测
来源期刊 武汉理工大学学报(交通科学与工程版) 学科 经济
关键词 粒子群优化 灰色理论 船闸 货运量 预测模型
年,卷(期) 2011,(6) 所属期刊栏目
研究方向 页码范围 1135-1138
页数 分类号 F502
字数 3586字 语种 中文
DOI 10.3963/j.issn.1006-2823.2011.06.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨星 17 72 5.0 7.0
2 王娅娜 河海大学交通与海洋学院 6 24 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (45)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(5)
  • 参考文献(1)
  • 二级参考文献(4)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群优化
灰色理论
船闸
货运量
预测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
武汉理工大学学报(交通科学与工程版)
双月刊
2095-3844
42-1824/U
大16开
武昌区和平大道1178号
38-148
1959
chi
出版文献量(篇)
5723
总下载数(次)
12
总被引数(次)
47608
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导