原文服务方: 计算机应用研究       
摘要:
单一核最小二乘支持向量机(LSSVM)在铁路货运量预测中难以准确描述货运量的复杂变化特征,限制了预测精度的提高.针对该问题,提出一种基于果蝇算法(FOA)优化混合核LSSVM的预测方法.以多项式核与径向基核组合的混合核函数作为LSSVM核函数,构建铁路货运量的混合核LSSVM预测模型,同时利用FOA全局寻优能力强、计算速度快等优点优化选择混合核LSSVM参数.以我国铁路货运量为例进行方法验证.结果表明,所提方法的RMSE、MAE、MAPE和THEIL值分别为8 433.0、6 670.8、0.018 0和0.011 7,均小于其他模型,FOA算法搜索混合核LSSVM参数的时间为40.2948 s,分别比GA和PSO算法减少了2.6208 s和20.701 6s,适合于铁路货运量的短期预测.
推荐文章
基于灰色模型的铁路货运量预测 ——以陕西省铁路货运为例
铁路货运
灰色模型
灰色预测
数据序列
后验差检验
预测精度
基于参数化三角范数的铁路货运量选择集成预测
铁路货运量
预测
选择性集成学习
Yager三角范数
遗传算法
基于指数平滑法预测企业货运量
指数平滑法
预测
货运量
基于支持向量回归机的公路货运量预测模型
公路货运量
支持向量回归机
人工神经网络
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FOA优化混合核LSSVM的铁路货运量预测
来源期刊 计算机应用研究 学科
关键词 铁路货运量 预测方法 混合核LSSVM 果蝇优化算法
年,卷(期) 2017,(2) 所属期刊栏目 算法研究探讨
研究方向 页码范围 409-412
页数 4页 分类号 U294.13
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2017.02.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈丽华 北京大学光华管理学院 58 302 10.0 15.0
2 耿立艳 石家庄铁道大学经济管理学院 43 214 10.0 14.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (76)
共引文献  (80)
参考文献  (10)
节点文献
引证文献  (13)
同被引文献  (81)
二级引证文献  (5)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(8)
  • 参考文献(1)
  • 二级参考文献(7)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(10)
  • 参考文献(0)
  • 二级参考文献(10)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(4)
  • 参考文献(4)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(6)
  • 引证文献(4)
  • 二级引证文献(2)
2019(9)
  • 引证文献(6)
  • 二级引证文献(3)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
铁路货运量
预测方法
混合核LSSVM
果蝇优化算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导