作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统K—means算法对初始聚类中心的选取和样本的输入顺序非常敏感,容易陷入局部最优。针对上述问题,提出了一种基于遗传算法的K—means聚类算法GKA,将K—means算法的局部寻优能力与遗传算法的全局寻优能力相结合,通过多次选择、交叉、变异的遗传操作,最终得到最优的聚类数和初始质心集,克服了传统K—means算法的局部性和对初始聚类中心的敏感性。
推荐文章
基于复合形遗传算法的K-means优化聚类方法
K-means聚类
遗传算法
复合形
复合形遗传算法
数据挖掘
一种基于密度的k-means聚类算法
聚类
k-means
信息熵
近邻密度
孤立点
一种分裂式的k-means聚类算法
聚类
数据预处理
初始聚类中心
一种基于SOM和K-means的文档聚类算法
自组织特征映射
K-means
聚类
组合方法
文档聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于遗传算法的K-means聚类算法
来源期刊 微型机与应用 学科 工学
关键词 遗传算法 K—means 聚类
年,卷(期) 2011,(20) 所属期刊栏目 技术与方法
研究方向 页码范围 71-73,76
页数 分类号 TP18
字数 3183字 语种 中文
DOI 10.3969/j.issn.1674-7720.2011.20.027
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王娟 贵州民族学院计算机与信息工程学院 10 29 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (11)
同被引文献  (17)
二级引证文献  (19)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(3)
  • 引证文献(3)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(9)
  • 引证文献(2)
  • 二级引证文献(7)
2019(7)
  • 引证文献(0)
  • 二级引证文献(7)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
遗传算法
K—means
聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导