基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
谱聚类算法已得到机器学习领域的广泛关注,其算法思想来源于谱图理论,通过矩阵的特征分解获得数据的低维嵌入,并用于后续聚类中.介绍了谱聚类方法的基本原理和算法思想,指出现有的谱聚类算法中存在初始化敏感、如何自动确定聚类分组数以及如何降低问题复杂度等问题,并针对存在的问题提出了相应的解决方法.
推荐文章
基于密度自适应邻域相似图的半监督谱聚类
谱聚类
密度自适应邻域
相似图
半监督学习
基于稀疏图的鲁棒谱聚类算法
谱聚类
稀疏表示
图拉普拉斯
L1正则化
内点法
基于LPCA的谱聚类算法
局部主成分分析
谱聚类
连通图分解
交叉点
基于自然最近邻相似图的谱聚类
谱聚类
自然最近邻
相似图
相似度矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于图划分的谱聚类方法的研究
来源期刊 计算机工程与设计 学科 工学
关键词 谱聚类 图划分 谱图理论 半监督聚类 机器学习
年,卷(期) 2011,(1) 所属期刊栏目
研究方向 页码范围 289-292
页数 分类号 TP301.6
字数 4515字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈俊杰 太原理工大学计算机与软件学院 220 1728 20.0 30.0
2 王会青 太原理工大学计算机与软件学院 19 202 7.0 14.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (26)
同被引文献  (59)
二级引证文献  (26)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(4)
  • 参考文献(4)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(5)
  • 引证文献(5)
  • 二级引证文献(0)
2013(5)
  • 引证文献(4)
  • 二级引证文献(1)
2014(8)
  • 引证文献(4)
  • 二级引证文献(4)
2015(7)
  • 引证文献(2)
  • 二级引证文献(5)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(12)
  • 引证文献(6)
  • 二级引证文献(6)
2018(6)
  • 引证文献(2)
  • 二级引证文献(4)
2019(6)
  • 引证文献(1)
  • 二级引证文献(5)
研究主题发展历程
节点文献
谱聚类
图划分
谱图理论
半监督聚类
机器学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导