原文服务方: 计算机测量与控制       
摘要:
传统的组合优化蚁群算法在求解优化过程中要消耗大量的时间,极易陷入局部最优解和收敛速度过慢等弊端,同时还会产生大量无用的冗余迭代码,运算效率低;因此,提出一种遗传蚁群优化算法;该算法具备了遗传算法快速搜索全局能力的同时也具备了蚁群算法并行性和正反馈机制;利用遗传算法改变选择算子、交叉算子和变异算子操作来确定路径上信息素的分布,将蚁群算法用于特征选择,采用支持向量机分类器分类性能反馈用于评价特征子集解,并通过对改变信息素的迭代、参数选择和增加对信息素局部更新方式指导特征结点重新组合;仿真实验表明,该算法可以有效提高计算精度,加快收敛速度,优化全局最优解的同时增强了系统的鲁棒性和稳定性.
推荐文章
求解车辆路径问题的改进蚁群算法
车辆路径问题
蚁群算法
遗传算法
变异算子
优化问题
收敛
求解Job-shop调度问题的遗传蚁群算法
Job-shop调度问题
遗传算法
蚁群算法
遗传算法与蚁群算法的融合
遗传蚁群算法
改进的蚁群算法求解VRP问题
VRP
蚁群算法
变异
局部搜索
用改进蚁群算法求解函数优化问题
函数优化
蚁群算法
进化算法
仿生算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进遗传蚁群算法求解优化问题的设计与实现
来源期刊 计算机测量与控制 学科
关键词 蚁群算法 支持向量机 特征权值 优化
年,卷(期) 2011,(10) 所属期刊栏目 设计与应用
研究方向 页码范围 2558-2561
页数 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙泽宇 洛阳理工学院计算机与信息工程系 59 317 10.0 13.0
2 丁国强 洛阳理工学院计算机与信息工程系 11 69 6.0 8.0
3 李传锋 洛阳理工学院计算机与信息工程系 22 67 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (44)
参考文献  (6)
节点文献
引证文献  (6)
同被引文献  (8)
二级引证文献  (13)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(5)
  • 参考文献(2)
  • 二级参考文献(3)
2009(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(6)
  • 引证文献(2)
  • 二级引证文献(4)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
蚁群算法
支持向量机
特征权值
优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导