基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
研究网络流量准确预测问题,网络流量变化是一种具有时变性、多尺度和突发性的非线性系统,由于传统时间序列预测方法很难揭示内在变化规律,导致网络流量的预测精度比较低.为了提高网络流量的预测精度,提出一种小波分析BP神经网络的网络流量预测模型.模型首先通过小波分析对网络流量进行分解,得到网络流量信号的近似和细节部分,然后进行重构提取多尺度特征,最后将重构的网络流量数据输入到BP神经网络,利用BP神经网络的非线性能力对网络流量进行训练、建模并预测.仿真结果表明,小波神经网络方法提高了网络流量预测精度,是一种有效实用的网络流量预测方法.
推荐文章
基于小波分解的网络流量时间序列建模与预测
网络流量
小波分解
时间序列
预测
网络流量预测模型的研究与分析
自相似
FARIMA
时序模型
组合神经网络的网络流量预测研究
网络流量
遗传算法
神经网络
预测
自相似网络流量预测研究
网络通信量
自相似
模型
参数估计
等价带宽
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 网络流量预测的建模与仿真研究
来源期刊 计算机仿真 学科 工学
关键词 小波分析 神经网络 网络流量 建模预测
年,卷(期) 2011,(12) 所属期刊栏目 网络与互连技术
研究方向 页码范围 84-87,106
页数 分类号 TP391.9
字数 3061字 语种 中文
DOI 10.3969/j.issn.1006-9348.2011.12.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 乐红兵 江南大学信息工程学院 30 94 5.0 8.0
2 朱斌 江南大学信息工程学院 3 31 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (193)
参考文献  (9)
节点文献
引证文献  (8)
同被引文献  (29)
二级引证文献  (15)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(5)
  • 参考文献(2)
  • 二级参考文献(3)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(3)
  • 引证文献(3)
  • 二级引证文献(0)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2014(3)
  • 引证文献(2)
  • 二级引证文献(1)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(5)
  • 引证文献(0)
  • 二级引证文献(5)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
小波分析
神经网络
网络流量
建模预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机仿真
月刊
1006-9348
11-3724/TP
大16开
北京海淀阜成路14号
82-773
1984
chi
出版文献量(篇)
20896
总下载数(次)
43
论文1v1指导