基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机是一种针对分类和回归问题的统计学习理论,是一类基于结构风险最小化原则的新型机器学习算法。其基本思想是通过用内积函数定义的非线性变换将输入空间变换到一个高维空间,在这个高维空间中寻求输入变量和输出变量之间的非线性关系的精确描述。本文构造了基于支持向量机的地区电网短期负荷预测模型,该模型具有较好的泛化性和收敛性。通过对实际电网负荷的预测仿真和测试,证实所提出的预测模型能获得满意的预测精度。
推荐文章
基于支持向量机的短期负荷预测
电力系统负荷
短期预测
支持向量机
网格法
基于相似日的支持向量机短期负荷预测
负荷预测
最小二乘支持向量机
细菌趋化
相似日
日期距离
基于最小二乘支持向量机的短期负荷预测模型
最小二乘支持向量机
神经网络
短期负荷预测
时间序列预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机的地区电网短期负荷预测模型研究
来源期刊 科技创新导报 学科 工学
关键词 电力系统 支持向量机 短期负荷预测
年,卷(期) 2011,(36) 所属期刊栏目 工业技术
研究方向 页码范围 45-46
页数 分类号 TM715
字数 2056字 语种 中文
DOI 10.3969/j.issn.1674-098X.2011.36.038
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 于强 5 4 1.0 2.0
2 王林峰 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (1)
同被引文献  (3)
二级引证文献  (0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电力系统
支持向量机
短期负荷预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科技创新导报
旬刊
1674-098X
11-5640/N
大16开
北京市
2004
chi
出版文献量(篇)
89179
总下载数(次)
271
总被引数(次)
207854
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导